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For the case of best Tchebycheff approximation to a real continuous
function on an interval [a, b] by a polynomial of degree » it is well-known
that the error function has at least n 4 1 zeros on [a, b]. No analogous result,
however, is known for the case of Tchebycheff approximation to an analytic
function on a disk of the complex plane. Indeed it is easy to conmstruct a
function f analytic on 4:jz] < 1 for which the constant of best uniform
approximation to f on 4 is not in the range f(4). On the other hand, there
are known examples [1, 4] of functions f for which the n-th error function has
precisely n -+ 1 zeros in 4.

The purpose of this paper is to exhibit a class of entire functions f, which
includes the exponential function, with the property that for each n sufficiently
large the polynomial of degree n of best Tchebycheff approximation to f on 4
interpolates to f in precisely n 4+ 1 points in 4 (Theorem 5). We also study
the distribution of these interpolation points (Theorem 4).

In [3] Motzkin and Walsh also investigate the zeros of the n-th error
function, but their resnlts pertain to Tchebycheff approximation on small
disks whose radii depend on n.

Throughout this paper f(z) denotes a function analytic on 4, p,(z) is the
polynomial of degree n of best Tchebycheff approximation to fon 4, and

En(f) = Hf—pn ” = max 1f(Z) - pn(z)l-

z1<1
We begin with a result on the degree of best approximation.

THEOREM 1. Let f(z) = 35 axz*, where a,.,/a, — 0 as n — co. Then

Ef) = | anna [[(1 4 4 Gnio/@nia PP + O( Gnig/ania D) M

as n — o,
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Proof. Let A = ¢**, where ¢ = —arg(a,.,/a,.,), and set

f(2) = f(A2), 4(z) = E":ak)\kzk + @y A2z,

Then we have

E(f) = E.(f) <l fi — gl

<lapa ||z 22200~ D223 |y 3 gy, @
Api1 Apiq n13
It is trivial to verify that

[z 4+ 722 — 7| = (1 4 479172, 7 real,

and hence from (2) we obtain

E(f) <|an1 | [(1 + 4] Anio/Oniy D2+ | Ao/ | i |Gx/anis ]]

n+3
This last inequality implies (1).
For comparison we mention the lower estimate

' Api1 ‘(1 + I an+2/an+1 12)1/2 < En(f)1

which follows from the inequalities

Y e <o [ 116~ pa@Rdz | < B

n+l
The above methods give the bounds (compare [2, p. 80])
1 1/2
mg) < (4 1)1 Ee?)

4 /2 n+4
<(1+(n—§—2)2) (n+2)J(rn+3)2’
< (2n + 2)! E,, (cos 2)

4 1/2
(2n + 3)*(2n + 4)2)
§§) 2n + 2)!
55/ 2n 4+ 6)!’
< (2 + 3)! Eppyy(sin z)
1/2
<(1+ n T 4);4(2;1 T 5)2)

72\ (20 + 3)!
ﬁ) Q2n+ 7!

(1+

1 1/2
1+ n T 30n 4 4)2)

<(1+

o

1/2
U+ Gt 4)21(2n 57

+
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There are certain analytic functions f for which the polynomials p,(z) of best
Tchebycheff approximation on 4 turn out to be the sections of the Taylor
development for f(see [5]). This is not the case for the functions of Theorem 1.
Indeed we have the following.

COROLLARY. Let f be as in Theorem 1. Then for each n sufficiently large
the polynomial 5,(z) = ¥q axz* is not the polynomial of degree n of best
Tchebycheff approximation to f on 4.

Proof. Suppose that for some increasing sequence of integers m we have
Su(2) = p(2). Since

@nyg | + [ Gmazl — Ll @t U~ Smlls
m+3

there follows from (1)
l@ma |+ 1 @i | < | OGmia (1 + 4 Grpofapy 1DVE + A | s/ 1]
and consequently
P < 4] ania/tmis | + A1 Gpisf/@mss |,

where 4 is a constant independent of m. But the right-hand member of the
last inequality approaches zero as m — oo, which gives the desired contra-
diction,

A result on the zeros of the error function will follow from

THEOREM 2. Iffis defined as in Theorem 1, then
Lm((f(2) — pa(@))annz"h) = 1, @)
uniformly for z on each compact set in |z | > 1.
Proof. 1t is easy to show that
lim ((£(2) — $u(@)ansaz™) = 1, @
uniformly for z on each compact set in the plane. Since

J, 150@ = pa@Pl el = 5= [ 1f@) = pu@dz] = 3 lal

n+l

1

27

é En(f)2 - \ Apiy tz - i Apa I12s
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it follows from (1) that

—%T_flzhl

as n — co. But (s,(z) — pn(2))/a,.12"** is analytic for |z | > 1, even at oo,
and so the last inequality implies that

an+a Qpig

S,,(Z) _pn(z) rldz[ <A

Api1Z nil

2
-0, (5

+ 4

Ani1

Sn(z) - pn(z) — 0, (6)

hm zn+l

n—>o an+1

uniformly for z on each closed setin | z | > 1. From (4) and (6) we deduce (3).
By applying the Argument Principle to (3) one can establish

THEOREM 3. Let f be as in Theorem 1 and let € > 0. Then for each
n > n.the error function f(z) — p,(z) has exactlyn 4 1 zerosin |z | < 1 + e
Concerning the distribution of these zeros of the error function we prove

THEOREM 4. Let f be as in Theorem 1 and for n > ny let o™, a,..., of™),
be then + 1 zeros of f(z) — pa(z) inthedisk | z | < 2. Then

n+1

H (Z - azn))

lim
e lia

Tz, Q]

uniformly for z on each compact set in |z | > 1.

The limit (7) implies that for an arbitrary function F analytic on 4 the
sequence of polynomials of respective degrees » found by interpolation to F
in the points o{™ converges maximally [6, Sect. 7.2] to F on 4.

Proof. Write f(z) — pu(z) = w,(2) ga(2), Where w,(z) = [Ti=y (z — ™),
and set M, = maXx,|«; | w,(z)|. We shall show that
lim sup ML/* < 1, (8)

n-»o

which is equivalent to (7), see [6, Sect. 7.4},

Let | < p < R.Since | w,(z)] < (R + 2)*+* for | z | = R, it follows from
Theorem 2 that
1/n

R gx(2)
Tz < mint iy |00

By the ‘“minimum modulus principle” we have for » sufficiently large

mm | ga(2)] < mm | (@),

lz]=
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and so
. w,(2) 1. . . z) |i/m
lim sup max ~—"—(-1)— lim inf min En(2).
-0 |zl=p | z"t n-o zl=R | Ay
. wp(z z) |1/
< Jm sup max _.;'i_)_‘_g"_(ll =
n->« iz|=p an+1Z"+
Hence

lim sup M1/ < lim sup max [ wa (2P < p(R -+ 2)/R.
n->wo zj=p

n->0

Letting R — <0 and p — 1 in the last inequality we deduce (8). This proves
Theorem 4.

We now show that under certain conditions the n-th error function has
exactly #n -+ 1 zeros in 4.

THEOREM 5. Let f(2) = Yy a,z*, where n*%a,, . /a, — 0 as n — co. Then
Jor each n sufficiently large f(z) — p.(2) has exactly n + 1 zeros in | z| < 1
andno zeroson |z | = 1.

Proof. 1t suffices to show that the limit (3) holds uniformly for | z | = 1.
By the Cauchy-Schwarz inequality and (5) we have for | z | = 1

Sn(z) - pn(z) 2 < (ﬁ + 1) Sn(z) - pn(z) 2
Ap 2" = 27 lzl=1 A" ‘ 2]
2
S+ 1[4y | 22| 4og, ) Se2 ],
n+1 apia

The hypothesis on the coefficients a; implies that the right-hand member of
the last inequality approaches zero as » — oo. Hence (6) and therefore (3)
hold uniformly for | z | = 1. This proves Theorem 5.

Using the estimates obtained in this paper one can deduce from Rouché’s
theorem that for n = 6 the polynomial of degree n of best Tchebycheff approxi-
mation to e* on 4 interpolates to e* in exactly n + 1 points in 4.

Added in proof. In contrast, S. Ja. Al’per has shown [Mathematical Analysis and its
Applications (Russian), pp. 3-6. lzdat. Rostov. Univ., Rostov-na-Donu, 1969] that
for each n there exists a function f(z) (depending on n) which is analyticin | z | < 1 con-
tinuous on | z | < 1, and such that f(z)—p(2) # 0, z in 4, k < n-1.
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