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For the case of best Tchebycheff approximation to a real continuous
function on an interval [a, b] by a polynomial of degree n it is well-known
that the error function has at least n + 1 zeros on [a, b]. No analogous result,
however, is known for the case of Tchebycheff approximation to an analytic
function on a disk of the complex plane. Indeed it is easy to construct a
function f analytic on LI: I z I :::;: I for which the constant of best uniform
approximation to f on Ll is not in the range f(Ll). On the other hand, there
are known examples [1, 4} of functions/for which the n-th error function has
precisely n + 1 zeros in LI.

The purpose of this paper is to exhibit a class of entire functions f, which
includes the exponential function, with the property that for each n sufficiently
large the polynomial of degree n of best Tchebycheff approximation to / on LI
interpolates to / in precisely n + 1 points in .d (Theorem 5). We also study
the distribution of these interpolation points (Theorem 4).

In [3] Motzkin and Walsh also investigate the zeros of the n-th error
function, but their results pertain to Tchebycheff approximation on small
disks whose radii depend on n.

Throughout this paper j(z) denotes a function analytic on .:1, p,,(z) is the
polynomial of degree n of best Tchebycheff approximation to / on LI, and

En(f) == 111 - Pn II '== max I j(z) - Pn(z)l.
rZI~I

We begin with a result on the degree of best approximation.

THEOREM 1. Let j(z) = L~ akzk, where an+1fan -->- 0 as n -->- 00. Then

En(f) = Ian+l [[(I + 4[ an+2fan+l1
2)1/2 + 0(1 an+3fan+l D] (1)

as n -->- 00.
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Proof Let,\ = ei<b, where c/> = -arg(on+2/0n+1)' and set

113

/1(Z) = f(;"z),

Then we have

n

q(z) =:= L Okt..kzk + an+2,\n+2zn.
o

EnU) = En(ft) ~ 11ft - q II

~ I 0n+1 III z + an+2
'\Z2 - an+2

,\ II + f I Ok I. (2)
an+1 an+1 n+3

It is trivial to verify that

T real,

and hence from (2) we obtain

EnU) ~ I an+1 I [(I + 4 I an+2/an+l 12)1/2 + I On+3/an+1 1~ IOk/On+3 I].
n+3

This last inequality implies (I).
For comparison we mention the lower estimate

I 0n+l 10 + I an+2/an+l 12)1/2 ~ En(f),

which follows from the inequalities

00 1
L I ak 1

2 ~ -2 f I fez) - pnCz)1 21dz 1 ~ EnU)2·
n+l 7T Izl~1

The above methods give the bounds (compare [2, p. 80])

(
1 )1/2

1 + (n + 2)2 ~ (/1 + I)! En(ez
)

(
4 )1/2 n + 4

~ ,I + (n + 2)2 + (n + 2)(n + 3)2 '

(
1 )1/2

1 + (2n + 3)2(2n + 4)2 ~ (2/1 + 2)! E2n(cos z)

4 )1/2
~ (1 + (2/1 + 3)2(2n + 4)2

(56) (2n + 2)!
+ 55 (2n + 6)! '

1 1/2
(1 + (2n + 4)2(2n + 5)2) ~ (2n + 3)! E2n+1(sin z)

(
4 )1/2

~ .. 1 + (2n + 4)2(2n + 5)2

+ (72) (2n + 3)!
71 (2n + 7)! .
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There are certain analytic functionsffor which the polynomials Pn(z) of best
Tchebycheff approximation on .1 turn out to be the sections of the Taylor
development forf(see [5]). This is not the case for the functions of Theorem I.
Indeed we have the following.

COROLLARY. Let f be as in Theorem I. Then for each n sufficiently large
the polynomial snCz) = L: akzk is not the polynomial of degree n of best
Tchebycheff approximation to f on .1.

Proof Suppose that for some increasing sequence of integers m we have
sm(z) == Pm(z). Since

00

! am+l I + I a"'+2 i - L I ak I ~ II f - s'" II,
m+3

there follows from (I)

I a"'+1 I + 1a"'+2 I :s;;; I am+1 1[(1 -+- 4 ! am+2/am+l 12)1/
2 + A I am+3/a"'+l 11

and consequently

where A is a constant independent of m. But the right~hand member of the
last inequality approaches zero as m --+ 00, which gives the desired contra~

diction.
A result on the zeros of the error function will follow from

THEOREM 2. Iffis defined as in Theorem I, then

lim«(f(z) - Pn(z))/an+lZn+1) = I,
n->'"

uniformly for z on each compact set in ! z i > I.

Proof It is easy to show that

lim «(f(z) - sn(z))/an+1Zn+1) = I,
n->'"

uniformly for z on each compact set in the plane. Since

(3)

(4)

11 00

-2 f I sn(z) - Pn(z)121 dz I = -2 f If(z) - Pn(z)121 dz I - I I ak 12
7T 1.1-1 7T \.1-1 n+l



ZEROS OF THE ERROR FUNCTION

it follows from (1) that

115

as n -+ 00. But (sn(z) - Pn(z))/an+lzn+l is analytic for I z I ~ I, even at 00,

and so the last inequality implies that

(6)

uniformly for z on each closed set in I z I > I. From (4) and (6) we deduce (3).
By applying the Argument Principle to (3) one can establish

THEOREM 3. Let f be as in Theorem I and let E > O. Then for each
n > n. the errorfunction fez) - Pn(z) has exactly n + I zeros in I z I < 1 + E.

Concerning the distribution of these zeros of the error function we prove

THEOREM 4. Letfbe as in Theorem 1 andfor n > nl let cxinl , cx~nl, ... , CX~~1

be the n + 1 zeros off(z) - Pn(z) in the disk I z I < 2. Then

I
n+l /l/n

lim Il (z - a~n») = I z I,
n-.oo

i=l

(7)

uniformly for z on each compact set in 1 z I > 1.

The limit (7) implies that for an arbitrary function F analytic on Ll the
sequence of polynomials of respective degrees n found by interpolation to F
in the points cx~nl converges maximally [6, Sect. 7.2] to F on Ll.

Proof. Writef(z) - Pn(z) = wn(z) gnCz), where wn(z) = IT;:; (z - cx~nl),
and set M n == maxlzl";l I wn(z)l. We shall show that

lim sup M~/n ~ 1,
n->oo

(8)

which is equivalent to (7), see [6, Sect. 7.4].
Let I < p < R. Since I wn(z)1 ~ (R + 2)n+l for I z I = R, it follows from

Theorem 2 that

_R__ ~ lim inf min I gn(z) I
l/n

•
R + 2 n->oo Izl=R an+l

By the "minimum modulus principle" we have for n sufficiently large
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and so

Hence

SAFF

lim sup max Iwn(Z) II/n lim inf min I gn(z) II/n
n->oo Izl~p Z,,+I n->oo Izl=R an+I

lim sup MIl" :(; lim sup max 1 w,.(z)[I/n :(; p(R + 2)/R.
n~oo n n-HX:> Izl=p

Letting R ~ 00 and p ~ 1 in the last inequality we deduce (8). This proves
Theorem 4.

We now show that under certain conditions the n-th error function has
exactly n + 1 zeros in ,1.

THEOREM 5. Let f(z) = L~ akzk, where nI/2an+l/an -->- 0 as n ~ 00. Then
for each n sufficiently large f(z) - Pn(z) has exactly n + 1 zeros in I z I < 1
and no zeros on I z I = 1.

Proof It suffices to show that the limit (3) holds uniformly for I z I = 1.
By the Cauchy-Schwarz inequality and (5) we have for I z I = 1

I
sn(z) - Pn(Z) 1

2
~ (n + 1) 1 I Sn(Z) - p,.(Z) 1

2 I d I
n+l '-'::: 2 n+l Zan+1z 7r Izl=1 an+lz

The hypothesis on the coefficients ak implies that the right-hand member of
the last inequality approaches zero as n -->- 00. Hence (6) and therefore (3)
hold uniformly for I Z I = 1. This proves Theorem 5.

Using the estimates obtained in this paper one can deduce from Rouche's
theorem that for n ;?: 6 the polynomial ofdegree n ofbest Tchebycheffapproxi
mation to eZ on ,1 interpolates to eZ in exactly n + 1 points in ..1.

Added in proof In contrast, S. Ja. Al'per has shown [Mathematical Analysis and its
Applications (Russian), pp. 3-6. Izdat. Rostov. Univ., Rostov-na-Donu, 1969] that
for each n there exists a function fez) (depending on n) which is analytic in I z I < 1 con
tinuous on \ z I < 1, and such that f(Z)-Pk(Z) *- 0, z in ..:1, k < n-l.
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